

DPP - 3 (Electrostatics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/51

Video Solution on YouTube:-

https://youtu.be/avecp_ICRGo

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/40

- Q 1. Determine the electrostatic potential energy of a system consisting of two charges $7\mu C$ and $-2\mu C$ (and with no external field) placed at (-9 cm,0,0) and (9 cm, 0, 0) respectively.
 - (a) -0.7 J

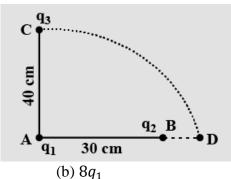
(b) -1.4 J

(c) 0.7 I

- (d) 1.4 I
- Two points charges a and b of values $5 \times 10^{-9} C$ and $3 \times 10^{-9} C$ are kept 6 cm apart in Q 2. air. calculate the work done when charge B is moved 1 cm towards charge A:
 - (a) $4.5 \times 10^{-7} I$
- (b) $5.4 \times 10^{-7} I$
- (c) $4.5 \times 10^{-9}I$
- (d) $5.4 \times 10^{19} I$
- Three chargers $q_1 = -2C$, $q_2 = 4C$ and $q_3 = 2C$ are at the three corners of an Q 3. equilateral triangle of side 9cm. Then the electric potential energy of the system is:
 - (a) $4 \times 10^{11} I$
- (c) $4 \times 10^9 J$
- (b) $-4 \times 10^{11} J$ (d) $-4 \times 10^9 J$
- Two identical charged particles having equal charge Q, are placed at a distance d apart, Q 4. from where they are released. Find out kinetic energy of each particle when they are infinitely away from each other: (k =

- Two equal charges q are placed at a distance 2a and a third charge -2q is placed at the Q 5. midpoint. The potential energy of the system is

- (b) $\frac{q^2}{8\pi\varepsilon_0 a}$ (d) $\frac{6q^2}{8\pi\varepsilon_0 a}$
- Q 6. Identical charges -q each are placed at the eight corners of a cube of side a. Find the electrostatic potential energy of a charge +q placed at the center of the cube:


(b) $\frac{-8\sqrt{2}q^2}{\pi\varepsilon_0 a}$ (d) $\frac{-4q^2}{\pi\varepsilon_0\sqrt{3}a}$

Physicsaholics

Q 7. Two charges q_1 and q_2 are placed 30cm apart as shown. A third charge q_3 is moved along the circle of radius 40cm from C to D. The change in the potential energy of the system is $\frac{q_3K}{4\pi\varepsilon_0}$. Find K

- (a) $8q_2$
- (c) $6q_2$

- (b) $8q_1$ (d) $6q_1$
- Q 8. A system consists of two charges $4\mu C$ and $-3\mu C$ with no external field placed at (-5 cm, 0, 0) and (5 cm, 0, 0) respectively. The amount of work required to separate the two charges (slowly) infinitely away from each other is
 - (a) 1.1 *J*
- (b) 2 *J*
- (c) 2.5 J
- (d) 3 I
- Q 9. Calculate the electrostatic potential energy of an electron-proton system of hydrogen atom. In the first Bohr orbit of hydrogen atom, the radius of the orbit is $5.3 \times 10^{-11} m$:
 - (a) $-4.35 \times 10^{-18} J$
- (b) $-2.175 \times 10^{-18} J$
- (c) -4.35×10^{-19}
- (d) $-2.175 \times 10^{-19} J$
- Q 10. point charge $q_1 = +2.4 \,\mu\text{C}$ is held stationary at the origin. A second point charge $q_2 = -4.3 \,\mu\text{C}$ moves from the point $x = 0.15 \,\text{m}$, y = 0 to the point $x = 0.250 \,\text{m}$, $y = 0.250 \,\text{m}$. The amount of work is done by the electric force on q_2 is nearly $-356 \times 10^{-x} J$. Find
 - (a) 2
- (b) 3
- (c) 4
- (d) 5

Answer Key

Q.1 a	Q.2 a	Q.3 b	Q.4 d	Q.5 c
Q.6 d	Q.7 a	Q.8 a	Q.9 a	Q.10 b