DPP - 3 (Electrostatics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/51

Video Solution on YouTube:-

Written Solution on Website:-

https://youtu.be/avecp_ICRGo

Q 1. Determine the electrostatic potential energy of a system consisting of two charges $7 \mu C$ and $-2 \mu C$ (and with no external field) placed at $(-9 \mathrm{~cm}, 0,0)$ and ($9 \mathrm{~cm}, 0,0$) respectively.
(a) -0.7 J
(b) -1.4 J
(c) 0.7 J
(d) 1.4 J

Q 2. Two points charges a and b of values $5 \times 10^{-9} \mathrm{C}$ and $3 \times 10^{-9} \mathrm{C}$ are kept 6 cm apart in air. calculate the work done when charge B is moved 1 cm towards charge A :
(a) $4.5 \times 10^{-7} \mathrm{~J}$
(b) $5.4 \times 10^{-7} \mathrm{~J}$
(c) $4.5 \times 10^{-9} \mathrm{~J}$
(d) $5.4 \times 10^{-9} \mathrm{~J}$

Q 3. Three chargers $q_{1}=-2 C, q_{2}=4 C$ and $q_{3}=2 C$ are at the three corners of an equilateral triangle of side 9 cm . Then the electric potential energy of the system is:
(a) $4 \times 10^{11} \mathrm{~J}$
(b) $-4 \times 10^{11} \mathrm{~J}$
(c) $4 \times 10^{9} \mathrm{~J}$
(d) $-4 \times 10^{9} \mathrm{~J}$

Q 4. Two identical charged particles having equal charge Q, are placed at a distance d apart, from where they are released. Find out kinetie energy of each particle when they are infinitely away from each other: $\left(\mathrm{k}=\frac{1}{4 \pi \varepsilon_{0}}\right)$
(a) $\frac{k Q^{2}}{d}$
(b) $\frac{2 k Q^{2}}{d}$
(c) $\frac{3 k Q^{2}}{2 d}$
(d) $\frac{k Q^{2}}{2 d}$

Q 5. Two equal charges q are placed at a distance $2 a$ and a third charge $-2 q$ is placed at the midpoint. The potential energy of the system is
(a) $\frac{9 q^{2}}{8 \pi \varepsilon_{0} a}$
(b) $\frac{q^{2}}{8 \pi \varepsilon_{0} a}$
(c) $\frac{-7 q^{2}}{8 \pi \varepsilon_{0} a}$
(d) $\frac{6 q^{2}}{8 \pi \varepsilon_{0} a}$

Q 6. Identical charges -q each are placed at the eight corners of a cube of side a. Find the electrostatic potential energy of a charge +q placed at the center of the cube:
(a) $\frac{-\sqrt{2} q^{2}}{4 \pi \varepsilon_{0} a}$
(b) $\frac{-8 \sqrt{2} q^{2}}{\pi \varepsilon_{0} a}$
(c) $\frac{-\sqrt{3} q^{2}}{8 \pi \varepsilon_{0} a}$
(d) $\frac{-4 q^{2}}{\pi \varepsilon_{0} \sqrt{3} a}$

hysicsaholics

Q 7. Two charges q_{1} and q_{2} are placed 30 cm apart as shown. A third charge q_{3} is moved along the circle of radius 40 cm from C to D . The change in the potential energy of the system is $\frac{q_{3} K}{4 \pi \varepsilon_{0}}$. Find K

(a) $8 q_{2}$
(b) $8 q_{1}$
(c) $6 q_{2}$
(d) $6 q_{1}$

Q 8. A system consists of two charges $4 \mu C$ and $-3 \mu C$ with no external field placed at (-5 $\mathrm{cm}, 0,0)$ and $(5 \mathrm{~cm}, 0,0)$ respectively. The amount of work required to separate the two charges (slowly) infinitely away from each other is
(a) 1.1 J
(b) 2 J
(c) 2.5 J
(d) 3 J

Q 9. Calculate the electrostatic potential energy of an electron-proton system of hydrogen atom. In the first Bohr orbit of hydrogen atom, the radius of theorbit is $5.3 \times 10^{-11} \mathrm{~m}$:
(a) $-4.35 \times 10^{-18} \mathrm{~J}$
(b) $-2.175 \times 10^{-18} \mathrm{~J}$
(c) $-4.35 \times 10^{-19} \mathrm{~J}$
(d) $-2.175 \times 10^{-19} \mathrm{~J}$

Q 10. point charge $q_{1}=+2.4 \mu C$ is held stationary at the origin. A second point charge $q_{2}=$ $-4.3 \mu G$ moves from the point $x=0.15 \mathrm{~m}, \mathrm{y}=0$ to the point $\mathrm{x}=0.250 \mathrm{~m}, \mathrm{y}=0.250 \mathrm{~m}$. The amount of work is done by the electric force on q_{2} is nearly $-356 \times 10^{-x} J$. Find
(a) 2
(b) 3
(c) 4
(d) 5

Answer Key

Q. 1	a	Q. 2	a	Q. 3	b	Q. 4	d	Q. 5	c
Q. 6	d	Q. 7	a	Q. 8	a	Q. 9	a	Q.10	b

